A Gcd-Sum Function Over Regular Integers Modulo n
نویسنده
چکیده
We introduce a gcd-sum function involving regular integers (mod n) and prove results giving its minimal order, maximal order and average order.
منابع مشابه
Extremal orders of some functions connected to regular integers modulo n
Let V (n) denote the number of positive regular integers (mod n) less than or equal to n. We give extremal orders of V (n)σ(n) n2 , V (n)ψ(n) n2 , σ(n) V (n) , ψ(n) V (n) , where σ(n), ψ(n) are the sum-of-divisors function and the Dedekind function, respectively. We also give extremal orders for σ∗(n) V (n) and φ∗(n) V (n) , where σ∗(n) and φ∗(n) represent the sum of the unitary divisors of n a...
متن کاملO ct 2 00 7 Regular integers modulo n László Tóth ( Pécs , Hungary ) October
Let n = p ν 1 1 · · · p νr r > 1 be an integer. An integer a is called regular (mod n) if there is an integer x such that a 2 x ≡ a (mod n). Let ̺(n) denote the number of regular integers a (mod n) such that 1 ≤ a ≤ n. Here ̺(n) = (φ(p ν 1 1) + 1) · · · (φ(p νr r) + 1), where φ(n) is the Euler function. In this paper we first summarize some basic properties of regular integers (mod n). Then in or...
متن کاملNumber Theory , OWF Variants Instructor
As a consequence of Algorithm 1 below, there always exist integers x, y ∈ Z such that ax+by = gcd(a, b). We say that a and b are co-prime (or relatively prime) if gcd(a, b) = 1, i.e., ax = 1 mod b. From this, x is the multiplicative inverse of a modulo b, and likewise y is the multiplicative inverse of b modulo a. The following deterministic algorithm shows that gcd(a, b) (and additionally, the...
متن کاملSums of Products of Congruence Classes and of Arithmetic Progressions
Consider the congruence class Rm(a) = {a + im : i ∈ Z} and the infinite arithmetic progression Pm(a) = {a+im : i ∈ N0}. For positive integers a, b, c, d,m the sum of products set Rm(a)Rm(b)+Rm(c)Rm(d) consists of all integers of the form (a+im)(b+jm)+(c+km)(d+lm) for some i, j, k, l ∈ Z}. It is proved that if gcd(a, b, c, d,m) = 1, then Rm(a)Rm(b) + Rm(c)Rm(d) is equal to the congruence class R...
متن کاملOn the Consecutive Powers of a Primitive Root: Gaps and Exponential Sums
For a primitive root g modulo a prime p ≥ 1 we obtain upper bounds on the gaps between the residues modulo p of the N consecutive powers agn , n = 1, . . . , N , which is uniform over all integers a with gcd(a, p)= 1. §
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009